Skip to main content
Top

02-01-2018 | Breast cancer | Article

SNPs related to vitamin D and breast cancer risk: a case-control study

Journal: Breast Cancer Research

Authors: Linnea Huss, Salma Tunå Butt, Peter Almgren, Signe Borgquist, Jasmine Brandt, Asta Försti, Olle Melander, Jonas Manjer

Publisher: BioMed Central

Abstract

Background

It has been suggested that vitamin D might protect from breast cancer, although studies on levels of vitamin D in association with breast cancer have been inconsistent. Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) to be associated with vitamin D. The aim of this study was to investigate such vitamin D-SNP associations in relation to subsequent breast cancer risk. A first step included verification of these SNPs as determinants of vitamin D levels.

Methods

The Malmö Diet and Cancer Study included 17,035 women in a prospective cohort. Genotyping was performed and was successful in 4058 nonrelated women from this cohort in which 865 were diagnosed with breast cancer. Levels of vitamin D (25-hydroxyvitamin D) were available for 700 of the breast cancer cases and 643 of unaffected control subjects. SNPs previously associated with vitamin D in GWASs were identified. Logistic regression analyses yielding ORs with 95% CIs were performed to investigate selected SNPs in relation to low levels of vitamin D (below median) as well as to the risk of breast cancer.

Results

The majority of SNPs previously associated with levels of vitamin D showed a statistically significant association with circulating vitamin D levels. Heterozygotes of one SNP (rs12239582) were found to have a statistically significant association with a low risk of breast cancer (OR 0.82, 95% CI 0.68–0.99), and minor homozygotes of the same SNP were found to have a tendency towards a low risk of being in the group with low vitamin D levels (OR 0.72, 95% CI 0.52–1.00). Results from stratified analyses showed diverse associations with breast cancer risk for a few of the tested SNPs, depending on whether vitamin D level was high or low.

Conclusions

SNPs associated with vitamin D may also be associated with the risk of breast cancer. Even if such a risk is small, the allele frequency of the SNP variants is high, and therefore the population attributable risk could be substantial. It is also possible that vitamin D levels may interact with genomic traits with regard to breast cancer risk.
Literature
1.
Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, Blaydes JP, Brennan K, Brown NJ, Bryant HE, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013;15(5):R92.CrossRefPubMedPubMedCentral
2.
Burdett T, Hall PN, Hastings E, Hindorff LA, Junkins HA, Klemm AK, MacArthur J, Manolio TA, Morales J, Parkinson H, Welter D. The NHGRI-EBI Catalog of published genome-wide association studies. www.​ebi.​ac.​uk/​gwas. Accessed 11 Apr 2016 and April 23, 2017, version 1.0.
3.
Grant WB. An ecological study of cancer incidence and mortality rates in France with respect to latitude, an index for vitamin D production. Dermatoendocrinol. 2010;2(2):62–7.CrossRefPubMedPubMedCentral
4.
Porojnicu A, Robsahm TE, Berg JP, Moan J. Season of diagnosis is a predictor of cancer survival. Sun-induced vitamin D may be involved: a possible role of sun-induced vitamin D. J Steroid Biochem Mol Biol. 2007;103(3-5):675–8.CrossRefPubMed
5.
Robsahm TE, Tretli S, Dahlback A, Moan J. Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer (Norway). Cancer Causes Control. 2004;15(2):149–58.CrossRefPubMed
6.
Rohan T. Epidemiological studies of vitamin D and breast cancer. Nutr Rev. 2007;65 Suppl 2:S80–3.CrossRefPubMed
7.
Colston KW. Vitamin D, and breast cancer risk. Best Pract Res Clin Endocrinol Metab. 2008;22(4):587–99.CrossRefPubMed
8.
Almquist M, Bondeson AG, Bondeson L, Malm J, Manjer J. Serum levels of vitamin D, PTH and calcium and breast cancer risk-a prospective nested case-control study. Int J Cancer. 2010;127(9):2159–68.CrossRefPubMed
9.
Gorham ED, Mohr SB, Garland FC, Garland CF. Vitamin D for cancer prevention and survival. Clin Rev Bone Miner Metab. 2009;7(2):159–75.CrossRef
10.
Shao T, Klein P, Grossbard ML. Vitamin D and breast cancer. Oncologist. 2012;17(1):36–45.CrossRefPubMedPubMedCentral
11.
Wang D, Velez de-la-Paz OI, Zhai JX, Liu DW. Serum 25-hydroxyvitamin D and breast cancer risk: a meta-analysis of prospective studies. Tumour Biol. 2013;34(6):3509–17.CrossRefPubMed
12.
Ong JS, Cuellar-Partida G, Lu Y, Fasching PA, Hein A, Burghaus S, Beckmann MW, Lambrechts D, Van Nieuwenhuysen E, Vergote I, et al. Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. Int J Epidemiol. 2016;45(5):1619–30.CrossRefPubMedPubMedCentral
13.
Khan MI, Bielecka ZF, Najm MZ, Bartnik E, Czarnecki JS, Czarnecka AM, Szczylik C. Vitamin D receptor gene polymorphisms in breast and renal cancer: current state and future approaches. Int J Oncol. 2014;44(2):349–63.CrossRefPubMed
14.
Shan JL, Dai N, Yang XQ, Qian CY, Yang ZZ, Jin F, Li M, Wang D. FokI polymorphism in vitamin D receptor gene and risk of breast cancer among Caucasian women. Tumour Biol. 2014;35(4):3503–8.CrossRefPubMed
15.
Xu Y, He B, Pan Y, Deng Q, Sun H, Li R, Gao T, Song G, Wang S. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumour Biol. 2014;35(5):4153–69.CrossRefPubMed
16.
Zhang K, Song L. Association between vitamin D receptor gene polymorphisms and breast cancer risk: a meta-analysis of 39 studies. PLoS One. 2014;9(4):e96125.CrossRefPubMedPubMedCentral
17.
Manjer J, Carlsson S, Elmstahl S, Gullberg B, Janzon L, Lindstrom M, Mattisson I, Berglund G. The Malmo diet and cancer study: representativity, cancer incidence and mortality in participants and non-participants. Eur J Cancer Prev. 2001;10(6):489–99.CrossRefPubMed
18.
Manjer J, Elmståhl S, Janzon L, Berglund G. Invitation to a population-based cohort study: differences between subjects recruited using various strategies. Scand J Public Health. 2002;30(2):103–12.CrossRefPubMed
19.
Fernandez C, Sandin M, Sampaio JL, Almgren P, Narkiewicz K, Hoffmann M, Hedner T, Wahlstrand B, Simons K, Shevchenko A, et al. Plasma lipid composition and risk of developing cardiovascular disease. PLoS One. 2013;8(8):e71846.CrossRefPubMedPubMedCentral
20.
Lucas RM, Gorman S, Black L, Neale RE. Clinical, research, and public health implications of poor measurement of vitamin D status. J AOAC Int. 2017;100(5):1225–9.CrossRefPubMed
21.
Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.CrossRefPubMed
22.
Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45.CrossRefPubMedPubMedCentral
23.
Anderson D, Holt BJ, Pennell CE, Holt PG, Hart PH, Blackwell JM. Genome-wide association study of vitamin D levels in children: replication in the Western Australian pregnancy cohort (raine) study. Genes Immun. 2014;15(8):578–83.CrossRefPubMed
24.
Benjamin EJ, Dupuis J, Larson MG, Lunetta KL, Booth SL, Govindaraju DR, Kathiresan S, Keaney Jr JF, Keyes MJ, Lin JP, et al. Genome-wide association with select biomarker traits in the Framingham heart study. BMC Med Genet. 2007;8 Suppl 1:S11.CrossRefPubMedPubMedCentral
25.
Jorde R, Schirmer H, Wilsgaard T, Joakimsen RM, Mathiesen EB, Njølstad I, Løchen ML, Figenschau Y, Berg JP, Svartberg J, et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality: the Tromsø study. PLoS One. 2012;7(5):e37295.CrossRefPubMedPubMedCentral
26.
Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8.CrossRefPubMedPubMedCentral
27.
Moy KA, Mondul AM, Zhang H, Weinstein SJ, Wheeler W, Chung CC, Mannisto S, Yu K, Chanock SJ, Albanes D. Genome-wide association study of circulating vitamin D-binding protein. Am J Clin Nutr. 2014;99(6):1424–31.CrossRefPubMedPubMedCentral
28.
Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–9.CrossRefPubMedPubMedCentral
29.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRefPubMedPubMedCentral
30.
Tagliabue E, Raimondi S, Gandini S. Meta-analysis of vitamin D-binding protein and cancer risk. Cancer Epidemiol Biomarkers Prev. 2015;24(11):1758–65.CrossRefPubMed
31.
Abbas S, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, Flesch-Janys D, Chang-Claude J. The Gc2 allele of the vitamin D binding protein is associated with a decreased postmenopausal breast cancer risk, independent of the vitamin D status. Cancer Epidemiol Biomarkers Prev. 2008;17(6):1339–43.CrossRefPubMed
32.
Anderson LN, Cotterchio M, Cole DE, Knight JA. Vitamin D-related genetic variants, interactions with vitamin D exposure, and breast cancer risk among Caucasian women in Ontario. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1708–17.CrossRefPubMed
33.
Jorde R, Schirmer H, Wilsgaard T, Bøgeberg Mathiesen E, Njølstad I, Lochen ML, Joakimsen RM, Grimnes G. The DBP phenotype Gc-1f/Gc-1f is associated with reduced risk of cancer: the Tromsø Study. PLoS One. 2015;10(5):e0126359.CrossRefPubMedPubMedCentral
34.
Maneechay W, Boonpipattanapong T, Kanngurn S, Puttawibul P, Geater SL, Sangkhathat S. Single nucleotide polymorphisms in the Gc gene for vitamin D binding protein in common cancers in Thailand. Asian Pac J Cancer Prev. 2015;16(8):3339–44.CrossRefPubMed
35.
Shi J, Grundy A, Richardson H, Burstyn I, Schuetz JM, Lohrisch CA, SenGupta SK, Lai AS, Brooks-Wilson A, Spinelli JJ, et al. Genetic variation in vitamin D-related genes and risk of breast cancer among women of European and East Asian descent. Tumour Biol. 2016;37(5):6379–87.CrossRefPubMed
36.
Abbas S, Nieters A, Linseisen J, Slanger T, Kropp S, Mutschelknauss EJ, Flesch-Janys D, Chang-Claude J. Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk. Breast Cancer Res. 2008;10(2):R31.CrossRefPubMedPubMedCentral
37.
Barlow L, Westergren K, Holmberg L, Talbäck M. The completeness of the Swedish cancer register: a sample survey for year 1998. Acta Oncol. 2009;48(1):27–33.CrossRefPubMed
38.
Brock K, Huang WY, Fraser DR, Ke L, Tseng M, Stolzenberg-Solomon R, Peters U, Ahn J, Purdue M, Mason RS, et al. Low vitamin D status is associated with physical inactivity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. J Steroid Biochem Mol Biol. 2010;121(1-2):462–6.CrossRefPubMedPubMedCentral
39.
Lips P. Vitamin D, physiology. Prog Biophys Mol Biol. 2006;92(1):4–8.CrossRefPubMed
40.
Need AG, O’Loughlin PD, Morris HA, Horowitz M, Nordin BE. The effects of age and other variables on serum parathyroid hormone in postmenopausal women attending an osteoporosis center. J Clin Endocrinol Metab. 2004;89(4):1646–9.CrossRefPubMed
41.
Romieu II, Amadou A, Chajes V. The role of diet, physical activity, body fatness, and breastfeeding in breast cancer in young women: epidemiological evidence. Rev Invest Clin. 2017;69(4):193–203.PubMed
42.
Scragg R, Camargo Jr CA. Frequency of leisure-time physical activity and serum 25-hydroxyvitamin D levels in the US population: results from the third national health and nutrition examination survey. Am J Epidemiol. 2008;168(6):577–91.CrossRefPubMedPubMedCentral
43.
Pilch W, Tota L, Sadowska-Krepa E, Piotrowska A, Kepinska M, Palka T, Maszczyk A. The effect of a 12-week health training program on selected anthropometric and biochemical variables in middle-aged women. Biomed Res Int. 2017;2017:9569513.CrossRefPubMedPubMedCentral
44.
Meng JE, Hovey KM, Wactawski-Wende J, Andrews CA, Lamonte MJ, Horst RL, Genco RJ, Millen AE. Intraindividual variation in plasma 25-hydroxyvitamin D measures 5 years apart among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2012;21(6):916–24.CrossRefPubMedPubMedCentral
45.
Platz EA, Leitzmann MF, Hollis BW, Willett WC, Giovannucci E. Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer. Cancer Causes Control. 2004;15(3):255–65.CrossRefPubMed