Skip to main content
Top

24-10-2017 | Acute myeloid leukemia | Article

Diagnostic and Prognostic Utility of Fluorescence In situ Hybridization (FISH) Analysis in Acute Myeloid Leukemia

Journal: Current Hematologic Malignancy Reports

Authors: Patrick R. Gonzales, Fady M. Mikhail

Publisher: Springer US

Abstract

Purpose of Review

Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33–50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML.

Recent Findings

Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH.

Summary

FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.
Literature
1.
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.CrossRefPubMed
2.
Gersen SL, Keagle MB, editors. The principles of clinical cytogenetics. 3rd ed. New York City: Springer; 2013.
3.
Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal hematopoiesis to secondary leukemia. Nat Rev Cancer. 2017;17:5–19.CrossRefPubMed
4.
Barrett R, Morash B, Roback D, Pambrun C, Marfleet L, Ketterling RP, et al. FISH identifies a KAT6A/CREBBP fusion caused by a cryptic insertional t(8;16) in a case of spontaneously remitting congenital acute myeloid leukemia with a normal karyotype. Pediatr Blood Cancer. 2017:1–4.
5.
Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:1–7.
6.
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.CrossRefPubMedPubMedCentral
7.
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.CrossRefPubMed
8.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRefPubMed
9.
Mikhail FM, Heerema NA, Rao KW, Burnside RD, Cherry AM, Cooley LD, et al. Section E6.1–6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow–acquired chromosomal abnormalities. Genet Med. 2016;18:635-42.
10.
Zneimer SM. Cytogenetic abnormalities: chromosomal, FISH and microarray-based clinical reporting. Hoboken: John Wiley & Sons, Inc.; 2014.CrossRef
11.
Sholl LM, Longtine J, Kuo FC. Molecular analysis of gene rearrangements and mutations in acute leukemias and myeloid neoplasms. Curr Protoc Hum Genet. 2017;92:10.4.1–10.4.49.CrossRef
12.
Mascarello JT, Hirsch B, Kearney HM, Ketterling RP, Olson SB, Quigley DI, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13:667–75.CrossRefPubMed
13.
Hourigan CS, Karp JE. Minimal residual disease evaluation in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10:460–71.CrossRefPubMedPubMedCentral
14.
Sasine JP, Schiller GJ. Acute myeloid leukemia: how do we measure success? Curr Hematol Malig Rep. 2016;11:528–36.CrossRefPubMed
15.
Gowan-Jordan J, Simons A, Schmid M, editors. ISCN 2016 an international system for human Cytogenomic nomenclature (2016). Basel: S. Karger AG; 2016.
16.
Ley TJ. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.CrossRefPubMed
17.
National Comprehensive Cancer Network. Acute myeloid leukemia (Version 3.2017) [Internet]. NCCN Clin. Pract. Guidel. Oncol. (NCCN Guidel. 2017 [cited 2017 Jul 13]. p. MS1-MS77. Available from: https://​www.​nccn.​org/​professionals/​physician_​gls/​pdf/​aml.​pdf
18.
Bochtler T, Granzow M, Stölzel F, Kunz C, Mohr B, Kartal-Kaess M, et al. Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia. Blood. 2017;129:1333–42.CrossRefPubMed
19.
Ney Garcia DR, De Souza MT, De Figueiredo AF, Othman MAK, Rittscher K, Abdelhay E, et al. Molecular characterization of KMT2A fusion partner genes in 13 cases of pediatric leukemia with complex or cryptic karyotypes. Hematol Oncol. 2016:1–9.
20.
Valentine M, Linabery A, Chasnoff S, Hughes A, Mallaney C, Sanchez N, et al. Excess congenital non-synonymous variation in leukemia-associated genes in MLL-infant leukemia: a Children’s Oncology Group report. Leukemia. 2014;28:1235–41.CrossRefPubMedPubMedCentral
21.
Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MYH11. Oncogene. 2004;23:4297–307.CrossRefPubMed
22.
Coleman WB, Tsongalis GJ, editors. Molecular diagnostics: for the clinical laboratorian. 2nd ed. Totowa: Humana Press; 2006.
23.
Zahedipour F, Ranjbaran R, Behbahani AB, Afshari KT, Okhovat MA, Tamadon G, et al. Development of flow cytometry-fluorescent in situ hybridization (flow-FISH) method for detection of PML/RARa chromosomal translocation in acute promyelocytic leukemia cell line. Avicenna J Med Biotech. 2017;9:104–8.
24.
Tirado CA, Siangchin K, Shabsovich DS, Sharifian M, Schiller G. A novel three-way rearrangement involving ETV6 (12p13) and ABL1 (9q34) with an unknown partner on 3p25 resulting in a possible ETV6-ABL1 fusion in a patient with acute myeloid leukemia: a case report and a review of the literature. Biomark Res. 2016;4:1–8.CrossRef
25.
Coleman JF, Theil KS, Tubbs RR, Cook JR. Diagnostic yield of bone marrow and peripheral blood FISH panel testing in clinically suspected myelodysplastic syndromes and/or acute myeloid leukemia: a prospective analysis of 433 cases. Am J Clin Pathol. 2011;135:915–20.CrossRefPubMed
26.
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.CrossRefPubMedPubMedCentral
27.
Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9.CrossRefPubMedPubMedCentral
28.
Verstovsek S, Tefferi A, editors. Myeloproliferative neoplasms. New York City: Humana Press; 2011.