Skip to main content
Top

17-03-2015 | Acute lymphoblastic leukemia | Article

Genomics in acute lymphoblastic leukaemia: insights and treatment implications

Authors: Kathryn G. Roberts, Charles G. Mullighan

Abstract

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer and an important cause of morbidity from haematological malignancies in adults. In the past several years, we have witnessed major advances in the understanding of the genetic basis of ALL. Genome-wide profiling studies, including microarray analysis and genome sequencing, have helped identify multiple key cellular pathways that are frequently mutated in ALL such as lymphoid development, tumour suppression, cytokine receptors, kinase and Ras signalling, and chromatin remodeling. These studies have characterized new subtypes of ALL, notably Philadelphia chromosome-like ALL, which is a high-risk subtype characterized by a diverse range of alterations that activate cytokine receptors or tyrosine kinases amenable to inhibition with approved tyrosine kinase inhibitors. Genomic profiling has also enabled the identification of inherited genetic variants of ALL that influence the risk of leukaemia development, and characterization of the relationship between genetic variants, clonal heterogeneity and the risk of relapse. Many of these findings are of direct clinical relevance and ongoing studies implementing clinical sequencing in leukaemia diagnosis and management have great potential to improve the outcome of patients with high-risk ALL.

Nat Rev Clin Oncol 2015; 12: 344–357. doi:10.1038/nrclinonc.2015.38

Subject terms: Acute lymphocytic leukaemia • Cancer genomics • Paediatric cancer

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer.1 Current treatment regimens result in 5-year event-free survival rates that exceed 85% in children (aged 1–21); however, disease relapse is associated with a poor outcome,2, 3 and ALL remains the leading cause of cancer-related death in children and young adults (aged 21–39).1 Although ALL is less common in adults, treatment outcomes are significantly inferior to those in children.4 The reasons underlying this age-related decline in outcome are not completely understood, but include a reduced prevalence of genetic alterations associated with a favourable outcome, such as high hyperdiploidy, presence of the ETV6–RUNX1 gene fusion and a higher incidence of genetic alterations associated with poor outcome, such as the BCR–ABL1 fusion in adults compared to children.4 Nevertheless, when compared to childhood ALL, detailed information on the genetic basis of ALL in adults is lacking. Importantly, few therapeutic strategies are available that specifically target genes or pathways known to be mutated in ALL. Development of such targeted approaches is urgently needed as currently used multiagent chemotherapy is associated with substantial short-term and long-term dose-limiting toxicities. Here, we review the current understanding of cytogenetic and molecular classification of ALL, with an emphasis on the latest insights into new entities of ALL with implications for improved clinical practice.

Literature
  1. Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. Lancet 381, 1943–1955 (2013). ISIPubMedArticle
  2. Ko, R. H. et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium Study. J. Clin. Oncol. 28, 648–654 (2010). ISIPubMedArticle
  3. Raetz, E. A. & Bhatla, T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Hematology Am. Soc. Hematol. Educ. Program 2012, 129–136 (2012). PubMed
  4. Stock, W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program. 2010, 21–29 (2010). PubMedArticle
  5. Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009). CASISIPubMedArticle
  6. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007). CASISIPubMedArticle
  7. Mullighan, C. G. et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453, 110–114 (2008). CASISIPubMedArticle
  8. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–80 (2009). CASISIPubMedArticle
  9. Mullighan, C. G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 106, 9414–9418 (2009). PubMedArticle
  10. Mullighan, C. G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011). CASISIPubMedArticle
  11. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). CASISIPubMedArticle
  12. Kuiper, R. P. et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21, 1258–1266 (2007). CASISIPubMedArticle
  13. Perez-Garcia, A. et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122, 2425–2432 (2013). CASISIPubMedArticle
  14. Tosello, V. et al. WT1 mutations in T-ALL. Blood 114, 1038–1045 (2009). CASISIPubMedArticle
  15. Tzoneva, G. et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat. Med. 19, 368–371 (2013). CASISIPubMedArticle
  16. Van Vlierberghe, P. et al. ETV6 mutations in early immature human T cell leukemias. J. Exp. Med. 208, 2571–2579 (2011). CASISIPubMedArticle
  17. Van Vlierberghe, P. et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 338–342 (2010). CASISIPubMedArticle
  18. Kawamata, N. et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 111, 776–784 (2008). CASISIPubMedArticle
  19. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012). CASISIPubMedArticle
  20. Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat. Genet. 45, 242–252 (2013). CASPubMedArticle
  21. Roberts, K. G. et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22, 153–166 (2012). CASISIPubMedArticle
  22. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013). CASISIPubMedArticle
  23. Kalender Atak, Z. et al. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet. 9, e1003997 (2013). CASPubMedArticle
  24. Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014). CASISIPubMedArticle
  25. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010). CASISIPubMedArticle
  26. Mardis, E. R. & Wilson, R. K. Cancer genome sequencing: a review. Hum. Mol. Genet. 18, R163–R168 (2009). CASISIPubMedArticle
  27. Biesecker, L. G. & Green, R. C. Diagnostic clinical genome and exome sequencing. N. Engl. J. Med. 370, 2418–2425 (2014). CASISIPubMedArticle
  28. Trimarchi, T. et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 158, 593–606 (2014). CASISIPubMedArticle
  29. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12, 847–865 (2013). CASISIPubMedArticle
  30. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012). CASISIPubMedArticle
  31. Bonasio, R. & Shiekhattar, R. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet. 48, 433–455 (2014). CASISIPubMedArticle
  32. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013). CASISIPubMedArticle
  33. Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 20, 1130–1137 (2014). CASISIPubMedArticle
  34. Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014). CASISIPubMedArticle
  35. Harrison, C. J. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br. J. Haematol. 144, 147–156 (2009). ISIPubMedArticle
  36. Harrison, C. J. & Foroni, L. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Rev. Clin. Exp. Hematol. 6, 91–113 (2002). CASPubMedArticle
  37. Paulsson, K. & Johansson, B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 48, 637–660 (2009). CASISIPubMedArticle
  38. Harrison, C. J. et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br. J. Haematol. 125, 552–559 (2004). ISIPubMedArticle
  39. Nachman, J. B. et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110, 1112–1115 (2007). CASISIPubMedArticle
  40. Raimondi, S. C. et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98, 2715–2722 (2003). ISIPubMedArticle
  41. Harrison, C. J. Acute lymphoblastic leukemia. Clin. Lab. Med. 31, 631–647 (2011). ISIPubMedArticle
  42. Russell, L. J. et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114, 2688–2698 (2009). CASISIPubMedArticle
  43. Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol. 8, 380–390 (2008). CASISIPubMedArticle
  44. Moorman, A. V. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 26, 123–135 (2012). CASISIPubMedArticle
  45. Bernt, K. M. & Hunger, S. P. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front. Oncol. 4, 54 (2014). PubMedArticle
  46. Moorman, A. V. et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 109, 3189–3197 (2007). CASISIPubMedArticle
  47. Den Boer, M. L. et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 10, 125–134 (2009). CASISIPubMedArticle
  48. Roberts, K. G. et al. Integrated genomic and mutational profiling of adolescent and young adult ALL Identifies a high frequency of BCR-ABL1-like ALL cases with very poor outcome [abstract]. Blood 122, 825 (2013). CASPubMedArticle
  49. Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 371, 1005–1015 (2014). CASISIPubMedArticle
  50. Mullighan, C. G. Genomic characterization of childhood acute lymphoblastic leukemia. Semin. Hematol. 50, 314–324 (2013). CASISIPubMedArticle
  51. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322, 1377–1380 (2008). CASISIPubMedArticle
  52. Yang, J. J. et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 112, 4178–4183 (2008). CASISIPubMedArticle
  53. Kawamata, N. et al. Molecular allelokaryotyping of relapsed pediatric acute lymphoblastic leukemia. Int. J. Oncol. 34, 1603–1612 (2009). CASISIPubMedArticle
  54. Safavi, S. et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia 27, 248–250 (2013). CASISIPubMedArticle
  55. Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-progenitor acute lymphoblastic leukemia. Nat. Commun. (in press).
  56. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukaemias. Nat. Genet. http://dx.doi.org/10.1038/ng.3230.
  57. Virely, C. et al. Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia. Leukemia 24, 1200–1204 (2010). CASISIPubMedArticle
  58. Dang, J., Mullighan, C. G., Phillips, L. A., Mehta, P. & Downing, J. R. Retroviral and chemical mutagenesis Identifies Pax5 as a tumor suppressor in B-progenitor acute lymphoblastic leukemia. Blood 112, 1789 (2008).
  59. Schjerven, H. et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat. Immunol. 14, 1073–1083 (2013). CASISIPubMedArticle
  60. Joshi, I. et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat. Immunol. 15, 294–304 (2014). CASISIPubMedArticle
  61. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999). CASISIPubMedArticle
  62. Fortschegger, K., Anderl, S., Denk, D. & Strehl, S. Functional heterogeneity of PAX5 chimeras reveals insight for leukemia development. Mol. Cancer Res. 12, 595–606 (2014). CASISIPubMedArticle
  63. Kawamata, N., Pennella, M. A., Woo, J. L., Berk, A. J. & Koeffler, H. P. Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 31, 966–977 (2012). CASISIPubMedArticle
  64. Nebral, K. et al. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23, 134–143 (2009). CASISIPubMedArticle
  65. Liu, G. J. et al. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia. Genes Dev. 28, 1337–1350 (2014). CASISIPubMedArticle
  66. Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol. 15, 283–293 (2014). CASISIPubMedArticle
  67. Churchman, M. et al. High content screening identifies synthetic lethality of retinoid receptor agonists in IKZF1-mutated BCR-ABL1 positive acute lymphoblastic leukemia. Blood 122, 172 (2013).
  68. van der Veer, A. et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123, 1691–1698 (2014). CASISIPubMedArticle
  69. Harvey, R. C. et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115, 5312–5321 (2010). CASISIPubMedArticle
  70. Stark, G. R. & Darnell, J. E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012). CASISIPubMedArticle
  71. Paulsson, K. et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 47, 26–33 (2008). CASISIPubMedArticle
  72. Wiemels, J. L. et al. Backtracking RAS mutations in high hyperdiploid childhood acute lymphoblastic leukemia. Blood Cells Mol. Dis. 45, 186–191 (2010). CASISIPubMedArticle
  73. Irving, J. et al. Ras pathway mutations are highly prevalent in relapsed childhood acute lymphoblastic leukaemia, may act as relapse-drivers and confer sensitivity to MEK inhibition. Blood 124, 3420–3430 (2014). CASISIPubMedArticle
  74. van der Veer, A. et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 122, 2622–2629 (2013). CASISIPubMedArticle
  75. Loh, M. L. et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood 121, 485–488 (2013). CASISIPubMedArticle
  76. Kiyokawa, N. et al. An analysis of Ph-like ALL in Japanese patients [abstract]. Blood 112, 352 (2013).
  77. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N. Engl. J. Med. 360, 2730–2741 (2009). CASISIPubMedArticle
  78. Roberts, K. G. et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J. Clin. Oncol. 32, 3012–3020 (2014). CASISIPubMedArticle
  79. Weston, B. W. et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J. Clin. Oncol. 31, e413–e416 (2013). ISIPubMedArticle
  80. Lengline, E. et al. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica 98, e146–e148 (2013). ISIPubMedArticle
  81. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009). CASISIPubMedArticle
  82. Harvey, R. C. et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention [abstract]. Blood 122, 826 (2013).
  83. Hertzberg, L. et al. Down syndrome acute lymphoblastic leukemia: a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the iBFM Study Group. Blood 115, 1006–1017 (2010). CASISIPubMedArticle
  84. Buitenkamp, T. D. et al. Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia 26, 2204–2211 (2012). CASISIPubMedArticle
  85. Yoda, A. et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 107, 252–257 (2010). CASPubMedArticle
  86. Shochat, C. et al. Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124, 106–110 (2014). CASISIPubMedArticle
  87. Cario, G. et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115, 5393–5397 (2010). CASISIPubMedArticle
  88. Palmi, C. et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia 10, 2245–2253 (2012). CASArticle
  89. Yamashita, Y. et al. IKZF1 and CRLF2 gene alterations correlate with poor prognosis in Japanese BCR-ABL1-negative high-risk B-cell precursor acute lymphoblastic leukemia. Pediatr. Blood Cancer 60, 1587–1592 (2013). CASISIPubMedArticle
  90. Attarbaschi, A. et al. Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: a comparative analysis of the AIEOP-BFM and UK NCRI-CCLG study groups. Br. J. Haematol. 158, 772–777 (2012). CASISIPubMedArticle
  91. Chen, I. M. et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 119, 3512–3522 (2012). CASISIPubMedArticle
  92. Ensor, H. M. et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood 117, 2129–2136 (2011). CASISIPubMedArticle
  93. Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484–1492 (2008). CASISIPubMedArticle
  94. Nikolaev, S. I. et al. Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. Nat. Commun. 5, 4654 (2014). CASPubMedArticle
  95. Tasian, S. K. et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 120, 833–842 (2012). CASISIPubMedArticle
  96. Maude, S. L. et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120, 3510–3518 (2012). CASISIPubMedArticle
  97. Shochat, C. et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J. Exp. Med. 208, 901–908 (2011). CASISIPubMedArticle
  98. Zenatti, P. P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43, 932–939 (2011). CASISIPubMedArticle
  99. Treanor, L. M. et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J. Exp. Med. 211, 701–713 (2014). CASISIPubMedArticle
  100. Pui, C. H. et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood 75, 1170–1177 (1990). CASISIPubMed
  101. Pui, C. H. et al. Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood 70, 247–253 (1987). CASISIPubMed
  102. An, Q. et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc. Natl Acad. Sci. USA 105, 17050–17054 (2008). PubMedArticle
  103. Muhlbacher, V. et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer 53, 524–536 (2014). CASISIPubMedArticle
  104. Mullighan, C. G. et al. ERG deletions define a novel subtype of B-progenitor acute lymphoblastic leukemia [abstract]. Blood 110, 691 (2007). 
  105. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005). CASISIPubMedArticle
  106. Marcucci, G. et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 25, 3337–3343 (2007). CASISIPubMedArticle
  107. Clappier, E. et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 28, 70–77 (2014). CASISIPubMedArticle
  108. Moorman, A. V. et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109, 2327–2330 (2007). CASISIPubMedArticle
  109. Harrison, C. J. et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28, 1015–1021 (2014). CASISIPubMedArticle
  110. Heerema, N. A. et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children's oncology group studies: a report from the Children's Oncology Group. J. Clin. Oncol. 31, 3397–3402 (2013). CASISIPubMedArticle
  111. Moorman, A. V. et al. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J. Clin. Oncol. 31, 3389–3396 (2013). ISIPubMedArticle
  112. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). CASISIPubMedArticle
  113. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007). CASISIPubMedArticle
  114. Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114, 647–650 (2009). CASISIPubMedArticle
  115. Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007). CASISIPubMedArticle
  116. Coustan-Smith, E. et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10, 147–156 (2009). CASISIPubMedArticle
  117. Neumann, M. et al. Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations. Blood Cancer J. 2, e55 (2012). CASPubMedArticle
  118. Inukai, T. et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99–15 Br. J. Haematol. 156, 358–365 (2012). CASISIPubMedArticle
  119. Patrick, K. et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br. J. Haematol. 166, 421–424 (2014). CASISIPubMedArticle
  120. Wood, B. L. et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children's Oncology Group (COG) study AALL0434 [abstract]. Blood 124, 1 (2014). PubMedArticle
  121. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–303 (2012). CASISIPubMedArticle
  122. Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat. Med. 18, 436–440 (2012). CASISIPubMedArticle
  123. Yan, L. et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica 97, 1708–1712 (2012). ISIPubMedArticle
  124. Atak, Z. K. et al. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet. 9, e1003997 (2013). CASPubMedArticle
  125. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18261–18266 (2006). CASPubMedArticle
  126. Figueroa, M. E. et al. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J. Clin. Invest. 123, 3099–3111 (2013). CASISIPubMedArticle
  127. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2, 1004–1023 (2012). CASISIPubMedArticle
  128. Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood 115, 1214–1225 (2010). CASISIPubMedArticle
  129. Schafer, E. et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115, 4798–4809 (2010). CASISIPubMedArticle
  130. Airoldi, I. et al. Methylation of the IL-12Rbeta2 gene as novel tumor escape mechanism for pediatric B-acute lymphoblastic leukemia cells. Cancer Res. 66, 3978–3980 (2006). CASISIPubMedArticle
  131. Batova, A. et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res. 57, 832–836 (1997). CASISIPubMed
  132. Borssen, M. et al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS ONE 8, e65373 (2013). CASPubMedArticle
  133. Nakamura, M. et al. p16/MTS1/INK4A gene is frequently inactivated by hypermethylation in childhood acute lymphoblastic leukemia with 11q23 translocation. Leukemia 13, 884–890 (1999). CASISIPubMedArticle
  134. Paulsson, K. et al. Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukaemia. Br. J. Haematol. 144, 838–847 (2009). CASISIPubMedArticle
  135. Roman-Gomez, J. et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104, 2492–2498 (2004). CASISIPubMedArticle
  136. Stumpel, D. J. et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490–5498 (2009). CASISIPubMedArticle
  137. Stumpel, D. J. et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25, 429–439 (2011). CASISIPubMedArticle
  138. Taylor, K. H. et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res. 67, 2617–2625 (2007). CASISIPubMedArticle
  139. Yang, Y. et al. Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk. Res. 30, 98–102 (2006). CASISIPubMedArticle
  140. Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010). CASISIPubMedArticle
  141. Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013). CASISIPubMedArticle
  142. Mar, B. G. et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat. Commun. 5, 3469 (2014). CASPubMedArticle
  143. Knoechel, B. et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat. Genet. 46, 364–370 (2014). CASISIPubMedArticle
  144. Roderick, J. E. et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123, 1040–1050 (2014). CASISIPubMedArticle
  145. Ntziachristos, P. et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514, 513–517 (2014). CASISIPubMedArticle
  146. Bhatia, K. P. et al. Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain 118, 1087–1093 (1995). ISIPubMedArticle
  147. Hof, J. et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 29, 3185–3193 (2011). ISIPubMedArticle
  148. Meyer, J. A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat. Genet. 45, 290–294 (2013). CASPubMedArticle
  149. Faham, M. et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120, 5173–5180 (2012). CASISIPubMedArticle
  150. Raphael, B. J., Dobson, J. R., Oesper, L. & Vandin, F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 6, 5 (2014). CASPubMedArticle
  151. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). CASISIPubMedArticle
  152. Marx, V. Cancer genomes: discerning drivers from passengers. Nat. Meth. 11, 375–379 (2014). CASArticle
  153. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013). CASISIPubMedArticle
  154. The Cancer Genome Atlas Research et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). CASISIPubMedArticle
  155. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013). CASISIPubMedArticle
  156. Xu, H. et al. Novel susceptibility variants at 10p12.31–122 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst. 105, 733–742 (2013). CASISIPubMedArticle
  157. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45, 1494–1498 (2013). CASPubMedArticle
  158. Yang, J. J. et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 120, 4197–4204 (2012). CASISIPubMedArticle
  159. Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat. Genet. 43, 237–241 (2011). CASISIPubMedArticle
  160. Yang, W. et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia 24, 894–896 (2010). CASISIPubMedArticle
  161. Yang, J. J. et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301, 393–403 (2009). CASPubMedArticle
  162. Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009). CASPubMedArticle
  163. Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122, 3298–3307 (2013). CASISIPubMedArticle
  164. Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat. Genet. 42, 492–494 (2010). CASISIPubMedArticle
  165. Prasad, R. B. et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 115, 1765–1767 (2010). CASISIPubMedArticle
  166. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009). CASISIPubMedArticle
  167. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat. Genet. 45, 1226–1231 (2013). CASPubMedArticle
  168. Powell, B. C. et al. Identification of TP53 as an acute lymphocytic leukemia susceptibility gene through exome sequencing. Pediatr. Blood Cancer 60, E1–E3 (2013). CASISIPubMedArticle
  169. Dyer, M. J. et al. Immunoglobulin heavy chain (IGH) locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL): rare clinical curios or potent genetic drivers? Blood 115, 1490–1499 (2009). CASISIPubMedArticle
  170. Perez-Andreu, V. et al. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 125, 680–686 (2015). CASISIPubMedArticle
  171. Auer, F. et al. Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia 5, 1136–1138 (2013). 
  172. Pui, C. H., Carroll, W. L., Meshinchi, S. & Arceci, R. J. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J. Clin. Oncol. 29, 551–565 (2011). ISIPubMedArticle
  173. Campana, D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia. Curr. Opin. Hematol. 19, 313–318 (2012). CASISIPubMedArticle
  174. Waanders, E. et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 25, 254–258 (2011). CASISIPubMedArticle
  175. Kuiper, R. P. et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 24, 1258–1264 (2010). CASISIPubMedArticle
  176. Palmi, C. et al. Impact of IKZF1 deletions on IKZF1 expression and outcome in Philadelphia chromosome negative childhood BCP-ALL. Reply to “incidence and biological significance of IKZF1/Ikaros gene deletions in pediatric Philadelphia chromosome negative and Philadelphia chromosome positive B-cell precursor acute lymphoblastic leukemia”. Haematologica 98, e164–e165 (2013). CASISIPubMedArticle
  177. Palmi, C. et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 98, 1226–1231 (2013). CASISIPubMedArticle
  178. Bhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 14, e205–e217 (2013). ISIPubMedArticle
  179. Venn, N. C. et al. Highly sensitive MRD tests for ALL based on the IKZF1 Delta3–6 microdeletion. Leukemia 26, 1414–1416 (2012). CASISIPubMedArticle
  180. Meyer, J. A., Carroll, W. L. & Bhatla, T. Screening for gene mutations: will identification of NT5C2 mutations help predict the chance of relapse in acute lymphoblastic leukemia? Expert. Rev. Hematol. 6, 223–224 (2013). CASISIPubMedArticle
  181. Iacobucci, I. et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114, 2159–2167 (2009). CASISIPubMedArticle
  182. Martinelli, G. et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J. Clin. Oncol. 27, 5202–5207 (2009). CASISIPubMedArticle
  183. Gaikwad, A. et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br. J. Haematol. 144, 930–932 (2009). CASISIPubMedArticle
  184. Kearney, L. et al. A specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukaemia. Blood 113, 646–648 (2008). CASISIPubMedArticle
  185. Yoda, A. et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 107, 252–257 (2010). CASPubMedArticle
  186. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011). CASISIPubMedArticle
  187. Blau, O. et al. Exon 5 mutations in the p53 gene in relapsed childhood acute lymphoblastic leukemia. Leuk. Res. 21, 721–729 (1997). CASISIPubMedArticle
  188. Gump, J., McGavran, L., Wei, Q. & Hunger, S. P. Analysis of TP53 mutations in relapsed childhood acute lymphoblastic leukemia. J. Pediatr. Hematol. Oncol. 23, 416–469 (2001).CASISIPubMedArticle