Skip to main content
Top

27-12-2017 | Acute lymphoblastic leukemia | Article

Influence of BCL2L11 polymorphism on osteonecrosis during treatment of childhood acute lymphoblastic leukemia

Journal: The Pharmacogenomics Journal

Authors: Maria Plesa, Vincent Gagné, Sanja Glisovic, Melissa Younan, Bahram Sharif-Askari, Caroline Laverdière, Nathalie Alos, Jean-Marie Leclerc, Stephen E Sallan, Donna Neuberg, Jeffery L Kutok, Lewis B Silverman, Daniel Sinnett, Maja Krajinovic

Publisher: Nature Publishing Group UK

Abstract

Osteonecrosis (ON) is corticosteroid-related complication, reported in children with acute lymphoblastic leukemia (ALL). We have previously found that polymorphisms in BCL2L11 gene coding for pro-apoptotic Bim protein influence reduction of overall survival (OS) in a corticosteroid (CS) dose-dependent manner in childhood ALL patients. The same set of SNPs was here investigated for an association with CS-related ON assessed retrospectively in 304 children with ALL from Quebec (QcALL cohort) who received Dana-Farber Cancer Institute (DFCI) ALL treatment protocols. Two-year cumulative incidence of symptomatic ON was 10.6%. Two BCL2L11 polymorphisms, the 891T>G (rs2241843) in all QcALL patients and 29201C>T (rs724710) in high-risk group were significantly associated with ON, P = 0.009 and P = 0.003, respectively. The association remained significant in multivariate model (HR891TT = 2.4, 95% CI 1.2–4.8, P = 0.01 and HR29201CC = 5.7, 95% CI 1.6–20.9, P = 0.008). Both polymorphisms influenced viability of dexamethasone treated lymphoblastoid cell lines (P ≤ 0.03). The 891T>G influenced Bim gamma isoform levels (0.03) and its association with ON was also confirmed in replication DFCI cohort (N = 168, P = 0.03). QcALL children had a high incidence of ON during therapy, which was highly associated with BCL2L11 polymorphisms.
Literature
1.
Patel B, Richards SM, Rowe JM, Goldstone AH, Fielding AK. High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia 2008;22:308–12.CrossRef
2.
Mattano LA Jr., Sather HN, Trigg ME, Nachman JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18:3262–72.CrossRef
3.
Arico M, Boccalatte MF, Silvestri D, Barisone E, Messina C, Chiesa R, et al Osteonecrosis: An emerging complication of intensive chemotherapy for childhood acute lymphoblastic leukemia. Haematologica 2003;88:747–53.PubMed
4.
te Winkel ML, Appel IM, Pieters R, van den Heuvel-Eibrink MM. Impaired dexamethasone-related increase of anticoagulants is associated with the development of osteonecrosis in childhood acute lymphoblastic leukemia. Haematologica 2008;93:1570–4.CrossRef
5.
Belgaumi AF, Al-Bakrah M, Al-Mahr M, Al-Jefri A, Al-Musa A, Saleh M, et al Dexamethasone-associated toxicity during induction chemotherapy for childhood acute lymphoblastic leukemia is augmented by concurrent use of daunomycin. Cancer 2003;97:2898–903.CrossRef
6.
Chan KL, Mok CC. Glucocorticoid-induced avascular bone necrosis: diagnosis and management. Open Othoped J 2012;6:449–57.CrossRef
7.
Hyakuna N, Shimomura Y, Watanabe A, Taga T, Kikuta A, Matsushita T, et al Assessment of corticosteroid-induced osteonecrosis in children undergoing chemotherapy for acute lymphoblastic leukemia: a report from the Japanese Childhood Cancer andLeukemia Study Group. J Pediatr Hematol Oncol 2014;36:22–29.CrossRef
8.
Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001;19:3066–72.CrossRef
9.
Silverman LB, Stevenson KE, O'Brien JE, Asselin BL, Barr RD, Clavell L, et al Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia 2010;24:320–34.CrossRef
10.
Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, Clavell LA, et al Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211–8.CrossRef
11.
Moghrabi A, Levy DE, Asselin B, Barr R, Clavell L, Hurwitz C, et al Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 2007;109:896–904.CrossRef
12.
Mazziotti G, Giustina A, Canalis E, Bilezikian JP. Glucocorticoid-induced osteoporosis: clinical and therapeutic aspects. Arq Bras Endocrinol Metabol 2007;51:1404–12.CrossRef
13.
Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol 2012;30:2760–7.CrossRef
14.
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998;102:274–82.CrossRef
15.
Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006;126:789–99.CrossRef
16.
Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE. The localization of the functional glucocorticoid receptor alpha in human bone. J Clin Endocrinol Metab 2000;85:883–9.PubMed
17.
Biddie SC, Conway-Campbell BL, Lightman SL. Dynamic regulation of glucocorticoid signalling in health and disease. Rheumatology (Oxford) 2012;51:403–12.CrossRef
18.
Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000;103:839–42.CrossRef
19.
Webster JC, Cidlowski JA. Downregulation of the glucocorticoid receptor. A mechanism for physiological adaptation to hormones. Ann N Y Acad Sci 1994;746:216–20.CrossRef
20.
Tonko M, Ausserlechner MJ, Bernhard D, Helmberg A, Kofler R. Gene expression profiles of proliferating vs. G1/G0 arrested human leukemia cells suggest a mechanism for glucocorticoid-induced apoptosis. FASEB J 2001;15:693–9.CrossRef
21.
Liu C, Janke LJ, Kawedia JD, Ramsey LB, Cai X, Mattano LA Jr, et al Asparaginase potentiates glucocorticoid-induced osteonecrosis in a mouse model. PLoS ONE 2016;11:e0151433.CrossRef
22.
Niinimaki RA, Harila-Saari AH, Jartti AE, Seuri RM, Riikonen PV, Paakko EL, et al High body mass index increases the risk for osteonecrosis in children with acute lymphoblastic leukemia. J Clin Oncol 2007;25:1498–504.CrossRef
23.
Bernbeck B, Mauz-Korholz C, Zotz RB, Gobel U. Methylenetetrahydrofolate reductase gene polymorphism and glucocorticoid intake in children with ALL and aseptic osteonecrosis. Klin Padiatr 2003;215:327–31.CrossRef
24.
Karol SE, Mattano LA Jr., Yang W, Maloney KW, Smith C, Liu C, et al Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood 2016;127:558–64.CrossRef
25.
Karol SE, Yang W, Van Driest SL, Chang TY, Kaste S, Bowton E, et al Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood 2015;126:1770–6.CrossRef
26.
Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C, et al Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 2011;117:2340–7. quiz 2556CrossRef
27.
French D, Hamilton LH, Mattano LA Jr, Sather HN, Devidas M, Nachman JB, et al A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:4496–9.CrossRef
28.
Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, et al Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003;81:543–55.CrossRef
29.
O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S, et al Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998;17:384–95.CrossRef
30.
Iglesias-Serret D, de Frias M, Santidrian AF, Coll-Mulet L, Cosialls AM, Barragan M, et al Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007;21:281–7.CrossRef
31.
Espina B, Liang M, Russell RG, Hulley PA. Regulation of bim in glucocorticoid-mediated osteoblast apoptosis. J Cell Physiol 2008;215:488–96.CrossRef
32.
Gagne V, Rousseau J, Labuda M, Sharif-Askari B, Brukner I, Laverdiere C, et al Bim polymorphisms: influence on function and response to treatment in children with acute lymphoblastic leukemia. Clin Cancer Res 2013;19:5240–9.CrossRef
33.
Vrooman LM, Stevenson KE, Supko JG, O'Brien J, Dahlberg SE, Asselin BL, et al Postinduction dexamethasone and individualized dosing of Escherichia Coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study--Dana-Farber Cancer Institute ALL Consortium Protocol 00-01. J Clin Oncol 2013;31:1202–10.CrossRef
34.
DCTD NCI (2006). National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0.
35.
Labuda D, Krajinovic M, Richer C, Skoll A, Sinnett H, Yotova V, et al Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem 1999;275:84–92.CrossRef
36.
Storey JDTJ, Siegmund D. . Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc 2004;66:187–205.CrossRef
37.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 2001;25:402–8.CrossRef
38.
Anczukow O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, et al The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 2012;19:220–8.CrossRef
39.
Kelly JL, Novak AJ, Fredericksen ZS, Liebow M, Ansell SM, Dogan A, et al Germline variation in apoptosis pathway genes and risk of non-Hodgkin's lymphoma. Cancer Epidemiol Biomark Prevent 2010;19:2847–58.CrossRef
40.
Miao J, Chen GG, Yun JP, Chun SY, Zheng ZZ, Ho RL, et al Identification and characterization of BH3 domain protein Bim and its isoforms in human hepatocellular carcinomas. Apoptosis 2007;12:1691–701.CrossRef
41.
Mattano LA Jr, Devidas M, Nachman JB, Sather HN, Hunger SP, Steinherz PG, et al Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol 2012;13:906–15.CrossRef
42.
Sato M, Sugano N, Ohzono K, Nomura S, Kitamura Y, Tsukamoto Y, et al Apoptosis and expression of stress protein (ORP150, HO1) during development of ischaemic osteonecrosis in the rat. J Bone Joint Surg Br 2001;83:751–9.CrossRef
43.
Zalavras C, Shah S, Birnbaum MJ, Frenkel B. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Expr 2003;13:221–35.CrossRef
44.
Kabata T, Kubo T, Matsumoto T, Nishino M, Tomita K, Katsuda S, et al Apoptotic cell death in steroid induced osteonecrosis: an experimental study in rabbits. J Rheumatol 2000;27:2166–71.PubMed
45.
Nott A, Meislin SH, Moore MJ. A quantitative analysis of intron effects on mammalian gene expression. RNA (New York, NY) 2003;9:607–17.CrossRef
46.
Ge W, Shi L, Zhou Y, Liu Y, Ma GE, Jiang Y, et al Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells 2011;29:1112–25.CrossRef
47.
Heidari N, Miller AV, Hicks MA, Marking CB, Harada H. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death Dis 2012;3:e349.CrossRef
48.
Bachmann PS, Gorman R, Papa RA, Bardell JE, Ford J, Kees UR, et al Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res 2007;67:4482–90.CrossRef
49.
Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB. Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005;105:2519–26.CrossRef
50.
Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 2003;278:23861–7.CrossRef
51.
Hunt R, Sauna ZE, Ambudkar SV, Gottesman MM, Kimchi-Sarfaty C. Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 2009;578:23–39.CrossRef
52.
Augis V, Airiau K, Josselin M, Turcq B, Mahon FX, Belloc F. A single nucleotide polymorphism in cBIM is associated with a slower achievement of major molecular response in chronic myeloid leukaemia treated with imatinib. PLoS ONE 2013;8:e78582.CrossRef
53.
Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012;18:521–8.CrossRef
54.
Katagiri STT, Tadokoro K, Ohyashiki JH, Ohyashiki K. BCL2L11 (BIM) deletion polymorphism, rather than BIM SNP, is an effective predictor of early molecular relapse after ABL tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia. Integr Cancer Sci Therap 2015;2:242–4.
55.
Lee JH, Lin YL, Hsu WH, Chen HY, Chang YC, Yu CJ, et al Bcl-2-like protein 11 deletion polymorphism predicts survival in advanced non-small-cell lung cancer. J Thorac Oncol 2014;9:1385–92.CrossRef