Skip to main content
Top

25-10-2017 | Acute leukemia | Article

(Immuno)proteasomes as therapeutic target in acute leukemia

Journal: Cancer and Metastasis Reviews

Authors: Jacqueline Cloos, Margot SF Roeten, Niels E Franke, Johan van Meerloo, Sonja Zweegman, Gertjan JL Kaspers, Gerrit Jansen

Publisher: Springer US

Abstract

The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Literature
1.
Terwilliger, T., & Abdul-Hay, M. (2017). Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J, 7, e577.PubMedPubMedCentralCrossRef
2.
De Kouchkovsky, I., & Abdul-Hay, M. (2016). Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J, 6, e441.PubMedPubMedCentralCrossRef
3.
Pui, C.-H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: an update. Journal of Clinical Oncology, 29, 551–565.PubMedCrossRef
4.
Paul, S., Kantarjian, H., & Jabbour, E. J. (2016). Adult acute lymphoblastic leukemia. Mayo Clinic Proceedings, 91, 1645–1666.PubMedCrossRef
5.
Chaudhury, S. S., Morison, J. K., Gibson, B. E. S., & Keeshan, K. (2015). Insights into cell ontogeny, age, and acute myeloid leukemia. Experimental Hematology, 43, 745–755.PubMedCrossRef
6.
Micel, L. N., Tentler, J. J., Smith, P. G., & Eckhardt, G. S. (2013). Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. Journal of Clinical Oncology, 31, 1231–1238.PubMedPubMedCentralCrossRef
7.
Tasian, S. K., & Hunger, S. P. (2017). Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 176, 867–882.PubMedCrossRef
8.
Prada-Arismendy, J., Arroyave, J. C., & Röthlisberger, S. (2017). Molecular biomarkers in acute myeloid leukemia. Blood Reviews, 31, 63–76.PubMedCrossRef
9.
Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nature Reviews. Cancer, 4, 349–360.PubMedCrossRef
10.
Anderson, K. C. (2012). The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. Journal of Clinical Oncology, 30, 445–452.PubMedPubMedCentralCrossRef
11.
Kapoor, P., Ramakrishnan, V., & Rajkumar, S. V. (2012). Bortezomib combination therapy in multiple myeloma. Seminars in Hematology, 49, 228–242.PubMedPubMedCentralCrossRef
12.
Wright, J. J. (2010). Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clinical Cancer Research, 16, 4094–4104.PubMedCrossRef
13.
Parlati, F., Lee, S. J., Aujay, M., et al. (2009). Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood, 114, 3439–3447.PubMedCrossRef
14.
Niewerth, D., Kaspers, G. J. L., Jansen, G., et al. (2016). Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology & Oncology, 9, 82.CrossRef
15.
Verbrugge, S. E., Scheper, R. J., Lems, W. F., et al. (2015). Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Research & Therapy, 17, 17.CrossRef
16.
Niewerth, D., Kaspers, G. J. L., Assaraf, Y. G., et al. (2014). Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology & Oncology, 7, 7.CrossRef
17.
Basler, M., Kirk, C. J., & Groettrup, M. (2012). The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology, 25, 74–80.PubMedCrossRef
18.
Seifert, U., Bialy, L. P., Ebstein, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.PubMedCrossRef
19.
Miller, Z., Ao, L., Kim, K. B., & Lee, W. (2013). Inhibitors of the immunoproteasome: current status and future directions. Current Pharmaceutical Design, 19, 4140–4151.PubMedPubMedCentralCrossRef
20.
Ho, Y. K., Bargagna-Mohan, P., Wehenkel, M., et al. (2007). LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chemistry & Biology, 14, 419–430.CrossRef
21.
Myung, J., Kim, K. B., Lindsten, K., et al. (2001). Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Molecular Cell, 7, 411–420.PubMedCrossRef
22.
Kuhn, D. J., Hunsucker, S. A., Chen, Q., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef
23.
de Bruin, G., Huber, E. M., Xin, B.-T., et al. (2014). Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes. Journal of Medicinal Chemistry, 57, 6197–6209.PubMedCrossRef
24.
Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.PubMedCrossRef
25.
Kisselev, A. F., van der Linden, W. A., & Overkleeft, H. S. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chemistry & Biology, 19, 99–115.CrossRef
26.
Huber, E. M., Basler, M., Schwab, R., et al. (2012). Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell, 148, 727–738.PubMedCrossRef
27.
Muchamuel, T., Basler, M., Aujay, M. A., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef
28.
Zhou, H.-J., Aujay, M. A., Bennett, M. K., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.PubMedCrossRef
29.
Niewerth, D., van Meerloo, J., Jansen, G., et al. (2014). Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Biochemical Pharmacology, 89, 43–51.PubMedCrossRef
30.
Singh, A. V., Bandi, M., Aujay, M. A., et al. (2011). PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. British Journal of Haematology, 152, 155–163.PubMedCrossRef
31.
Niewerth, D., Jansen, G., Riethoff, L. F., et al. (2014). Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib). Molecular Pharmacology, 86, 12–19.PubMedPubMedCentralCrossRef
32.
Adams, J., Palombella, V. J., & Elliott, P. J. (2000). Proteasome inhibition: a new strategy in cancer treatment. Investigational New Drugs, 18, 109–121.PubMedCrossRef
33.
Almond, J. B., & Cohen, G. M. (2002). The proteasome: a novel target for cancer chemotherapy. Leukemia, 16, 433–443.PubMedCrossRef
34.
Adams, J., Behnke, M., Chen, S., et al. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8, 333–338.CrossRef
35.
Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8, 397–403.PubMedCrossRef
36.
Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef
37.
Adams, J. (2000). The proteasome: structure, function, and role in the cell. Cancer Treatment Reviews, 29(Suppl 1), 3–9.
38.
Chauhan, D., Hideshima, T., & Anderson, K. C. (2006). A novel proteasome inhibitor NPI-0052 as an anticancer therapy. British Journal of Cancer, 95, 961–965.PubMedPubMedCentralCrossRef
39.
Chauhan, D., Singh, A. V., Aujay, M., et al. (2010). A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood, 116, 4906–4915.PubMedPubMedCentralCrossRef
40.
Chauhan, D., Tian, Z., Zhou, B., et al. (2011). In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clinical Cancer Research, 17, 5311–5321.PubMedPubMedCentralCrossRef
41.
Kuhn, D. J., Chen, Q., Voorhees, P. M., et al. (2007). Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood, 110, 3281–3290.PubMedPubMedCentralCrossRef
42.
Piva, R., Ruggeri, B., Williams, M., et al. (2008). CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood, 111, 2765–2775.PubMedCrossRef
43.
Dick, L. R., & Fleming, P. E. (2010). Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discovery Today, 15, 243–249.PubMedCrossRef
44.
Niewerth, D., Jansen, G., Assaraf, Y. G., et al. (2015). Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resistance Updates, 18, 18–35.PubMedCrossRef
45.
Ruschak, A. M., Slassi, M., Kay, L. E., & Schimmer, A. D. (2011). Novel proteasome inhibitors to overcome bortezomib resistance. Journal of the National Cancer Institute, 103, 1007–1017.PubMedCrossRef
46.
Kale, A. J., & Moore, B. S. (2012). Molecular mechanisms of acquired proteasome inhibitor resistance. Journal of Medicinal Chemistry, 55, 10317–10327.PubMedPubMedCentralCrossRef
47.
Kirk, C. J. (2012). Discovery and development of second-generation proteasome inhibitors. Seminars in Hematology, 49, 207–214.PubMedCrossRef
48.
Niewerth, D., Franke, N. E., Jansen, G., et al. (2013). Higher ratio immune vs. constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica, 98, 1896–1904.PubMedPubMedCentralCrossRef
49.
Drexler, H. C. (1997). Activation of the cell death program by inhibition of proteasome function. Proceedings of the National Academy of Sciences of the United States of America, 94, 855–860.PubMedPubMedCentralCrossRef
50.
Soligo, D., Servida, F., Delia, D., et al. (2001). The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. British Journal of Haematology, 113, 126–135.PubMedCrossRef
51.
Vrana, J. A., & Grant, S. (2001). Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade. Blood, 97, 2105–2114.PubMedCrossRef
52.
Chandra, J., Niemer, I., Gilbreath, J., et al. (1998). Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood, 92, 4220–4229.PubMed
53.
Dai, Y., Rahmani, M., & Grant, S. (2003). Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene, 22, 7108–7122.PubMedCrossRef
54.
Pahler, J. C., Ruiz, S., Niemer, I., et al. (2003). Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia. Clinical Cancer Research, 9, 4570–4577.PubMed
55.
Dai, Y., Rahmani, M., Pei, X. Y., et al. (2004). Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood, 104, 509–518.PubMedCrossRef
56.
Duechler, M., Shehata, M., Schwarzmeier, J. D., et al. (2005). Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia, 19, 260–267.PubMedCrossRef
57.
Horton, T. M., Gannavarapu, A., Blaney, S. M., et al. (2006). Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemotherapy and Pharmacology, 58, 13–23.PubMedCrossRef
58.
Yanamandra, N., Colaco, N. M., Parquet, N. A., et al. (2006). Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clinical Cancer Research, 12, 591–599.PubMedCrossRef
59.
Houghton, P. J., Morton, C. L., Kolb, E. A., et al. (2008). Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood & Cancer, 50, 37–45.CrossRef
60.
Servida, F., Soligo, D., Delia, D., et al. (2005). Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia, 19, 2324–2331.PubMedCrossRef
61.
Stapnes, C., Doskeland, A. P., Hatfield, K., et al. (2007). The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. British Journal of Haematology, 136, 814–828.PubMedCrossRef
62.
Kraus, M., Muller-Ide, H., Ruckrich, T., et al. (2014). Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leukemia Research, 38, 383–392.PubMedCrossRef
63.
Liu, H., Westergard, T. D., Cashen, A., et al. (2014). Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell, 25, 530–542.PubMedPubMedCentralCrossRef
64.
Miller, C. P., Rudra, S., Keating, M. J., et al. (2009). Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood, 113, 4289–4299.PubMedPubMedCentralCrossRef
65.
Miller, C. P., Ban, K., Dujka, M. E., et al. (2007). NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood, 110, 267–277.PubMedPubMedCentralCrossRef
66.
Paulus, A., Masood, A., Miller, K. C., et al. (2014). The investigational agent MLN2238 induces apoptosis and is cytotoxic to CLL cells in vitro, as a single agent and in combination with other drugs. British Journal of Haematology, 165, 78–88.PubMedCrossRef
67.
Franke, N. E., Vink, J., Cloos, J., & Kaspers, G. J. (2008). Proteasome and protease inhibitors. In G. J. Kaspers, B. Coiffier, M. Heinrich, & E. Estey (Eds.), Innov. Leuk. Lymphoma Ther (pp. 469–489). New York: Informa Healthcare USA, Inc..
68.
Oerlemans, R., Franke, N. E., Assaraf, Y. G., et al. (2008). Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood, 112, 2489–2499.PubMedCrossRef
69.
Lu, S., Yang, J., Chen, Z., et al. (2009). Different mutants of PSMB5 confer varying bortezomib resistance in T lymphoblastic lymphoma/leukemia cells derived from the Jurkat cell line. Experimental Hematology, 37, 831–837.PubMedCrossRef
70.
Ri, M., Iida, S., Nakashima, T., et al. (2010). Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia, 24, 1506–1512.PubMedCrossRef
71.
Franke, N. E., Niewerth, D., Assaraf, Y. G., et al. (2012). Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia, 26, 757–768.PubMedCrossRef
72.
McConkey, D. J., & Zhu, K. (2008). Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resistance Updates, 11, 164–179.PubMedCrossRef
73.
Franke, N. E., Kaspers, G. L., Assaraf, Y. G., et al. (2014). Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget, 7, 74779–74796.
74.
Busse, A., Kraus, M., Na, I. K., et al. (2008). Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer, 112, 659–670.PubMedCrossRef
75.
Fuchs, D., Berges, C., Opelz, G., et al. (2008). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Journal of Cellular Biochemistry, 103, 270–283.PubMedCrossRef
76.
Frisan, T., Levitsky, V., & Masucci, M. G. (2000). Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. International Journal of Cancer, 88, 881–888.PubMedCrossRef
77.
Lu, S., Chen, Z., Yang, J., et al. (2008). Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Experimental Hematology, 36, 1278–1284.PubMedCrossRef
78.
Verbrugge, S. E., Al, M., Assaraf, Y. G., et al. (2013). Overcoming bortezomib resistance in human B cells by anti-CD20 / rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors. Experimental Hematology & Oncology, 2, 2–12.CrossRef
79.
de Wilt, L. H. A. M., Jansen, G., Assaraf, Y. G., et al. (2012). Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochemical Pharmacology, 83, 207–217.PubMedCrossRef
80.
Kale, A. J., McGlinchey, R. P., Lechner, A., & Moore, B. S. (2011). Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A. ACS Chemical Biology, 6, 1257–1264.PubMedPubMedCentralCrossRef
81.
Suzuki, E., Demo, S., Deu, E., et al. (2011). Molecular mechanisms of bortezomib resistant adenocarcinoma cells. PLoS One, 6, e27996.PubMedPubMedCentralCrossRef
82.
Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef
83.
Adler, K. B., Tuvim, M. J., & Dickey, B. F. (2013). Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne), 4, 129.
84.
Buschow, S. I., Liefhebber, J. M. P., Wubbolts, R., & Stoorvogel, W. (2005). Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis, 35, 398–403.PubMedCrossRef
85.
David, E., Kaufman, J. L., Flowers, C. R., et al. (2010). Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood, 116, 5285–5288.PubMedPubMedCentralCrossRef
86.
Escalante, A. M., McGrath, R. T., Karolak, M. R., et al. (2013). Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 71, 1567–1576.PubMedPubMedCentralCrossRef
87.
Hamouda, M.-A., Belhacene, N., Puissant, A., et al. (2014). The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget, 5, 6252–6266.PubMedPubMedCentralCrossRef
88.
Hoang, B., Benavides, A., Shi, Y., et al. (2009). Effect of autophagy on multiple myeloma cell viability. Molecular Cancer Therapeutics, 8, 1974–1984.PubMedCrossRef
89.
Milani, M., Rzymski, T., Mellor, H. R., et al. (2009). The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with bortezomib. Cancer Research, 69, 4415–4423.PubMedCrossRef
90.
Chen, S., Zhang, Y., Zhou, L., et al. (2014). A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood, 124, 2687–2697.PubMedPubMedCentralCrossRef
91.
Milan, E., Perini, T., Resnati, M., et al. (2015). A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy, 11, 1161–1178.PubMedPubMedCentralCrossRef
92.
Jarauta, V., Jaime, P., Gonzalo, O., et al. (2016). Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Letters, 382, 1–10.PubMedCrossRef
93.
Baranowska, K., Misund, K., Starheim, K. K., et al. (2016). Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells. Oncotarget, 7, 70845–70856.PubMedPubMedCentral
94.
Hideshima, T., Bradner, J. E., Wong, J., et al. (2005). Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proceedings of the National Academy of Sciences, 102, 8567–8572.CrossRef
95.
Nawrocki, S. T., Carew, J. S., Pino, M. S., et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Research, 66, 3773–3781.PubMedCrossRef
96.
Sriram, S. M., Han, D. H., & Kim, S. T. (2011). Partners in crime: ubiquitin-mediated degradation and autophagy. Science Signaling, 4, jc4.PubMedCrossRef
97.
Fang, J., Rhyasen, G., Bolanos, L., et al. (2012). Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 120, 858–867.PubMedPubMedCentralCrossRef
98.
Zhou, J., Ching, Y. Q., & Chng, W.-J. (2015). Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget, 6, 5490–5500.PubMedPubMedCentralCrossRef
99.
Bosman, M. C. J., Schuringa, J. J., Quax, W. J., & Vellenga, E. (2013). Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1. Experimental Hematology, 41, 530–538.e1.PubMedCrossRef
100.
Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2010). Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells. Molecular Cancer, 9, 176.PubMedPubMedCentralCrossRef
101.
Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2008). Bortezomib-resistant nuclear factor-κB activity in multiple myeloma cells. Molecular Cancer Research, 6, 1356–1364.PubMedPubMedCentralCrossRef
102.
Hideshima, T., Ikeda, H., Chauhan, D., et al. (2009). Bortezomib induces canonical nuclear factor-κB activation in multiple myeloma cells. Blood, 114, 1046–1052.PubMedPubMedCentralCrossRef
103.
Jung, H. J., Chen, Z., Fayad, L., et al. (2012). Bortezomib-resistant nuclear factor κB expression in stem-like cells in mantle cell lymphoma. Experimental Hematology, 40, 107–118.e2.PubMedCrossRef
104.
Yang, D. T., Young, K. H., Kahl, B. S., et al. (2008). Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Molecular Cancer, 7, 40.PubMedPubMedCentralCrossRef
105.
Kim, A., Park, S., Lee, J.-E., et al. (2012). The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leukemia Research, 36, 912–920.PubMedCrossRef
106.
Liu, C.-Y., Shiau, C.-W., Kuo, H.-Y., et al. (2013). Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells. Haematologica, 98, 729–738.PubMedPubMedCentralCrossRef
107.
Que, W., Chen, J., Chuang, M., & Jiang, D. (2012). Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS, 120, 195–203.PubMedCrossRef
108.
Kuhn, D. J., Berkova, Z., Jones, R. J., et al. (2012). Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood, 120, 3260–3270.PubMedPubMedCentralCrossRef
109.
Maiso, P., Ocio, E. M., Garayoa, M., et al. (2008). The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. British Journal of Haematology, 141, 470–482.PubMedCrossRef
110.
Wu, K.-D., Zhou, L., Burtrum, D., et al. (2006). Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunology, Immunotherapy, 56, 343–357.PubMedCrossRef
111.
Leung-Hagesteijn, C., Erdmann, N., Cheung, G., et al. (2013). Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell, 24, 289–304.PubMedPubMedCentralCrossRef
112.
Gambella, M., Rocci, A., Passera, R., et al. (2014). High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica, 99, e14–e16.PubMedPubMedCentralCrossRef
113.
Minderman, H., Zhou, Y., O’Loughlin, K. L., & Baer, M. R. (2007). Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemotherapy and Pharmacology, 60, 245–255.PubMedCrossRef
114.
Verbrugge, S. E., Assaraf, Y. G., Dijkmans, B. A., et al. (2012). Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with. The Journal of Pharmacology and Experimental Therapeutics, 341, 174–182.PubMedCrossRef
115.
Ao, L., Wu, Y., Kim, D., et al. (2012). Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Molecular Pharmaceutics, 9, 2197–2205.PubMedPubMedCentralCrossRef
116.
O’Connor, R., Ooi, M. G., Meiller, J., et al. (2013). The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemotherapy and Pharmacology, 71, 1357–1368.PubMedPubMedCentralCrossRef
117.
Shaughnessy Jr., J. D., Qu, P., Usmani, S., et al. (2011). Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3. Blood, 118, 3512–3524.PubMedPubMedCentralCrossRef
118.
Shuqing, L., Jianmin, Y., Chongmei, H., et al. (2011). Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Experimental Hematology, 39, 1117–1118.PubMedCrossRef
119.
Weniger, M. A., Rizzatti, E. G., Perez-Galan, P., et al. (2011). Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clinical Cancer Research, 17, 5101–5112.PubMedPubMedCentralCrossRef
120.
Matondo, M., Bousquet-Dubouch, M. P., Gallay, N., et al. (2010). Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leukemia Research, 34, 498–506.PubMedCrossRef
121.
Wang, L., Kumar, S., Fridley, B. L., et al. (2008). Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clinical Cancer Research, 14, 3503–3513.PubMedPubMedCentralCrossRef
122.
Lichter, D. I., Danaee, H., Pickard, M. D., et al. (2012). Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood, 120, 4513–4516.PubMedPubMedCentralCrossRef
123.
Barrio, S., Stühmer, T., Teufel, E., et al. (2016). Parallel evolution of multiple PSMB5 mutations in a myeloma patient treated with bortezomib. Blood, 128, 3282.
124.
Bachas, C., Schuurhuis, G. J., Reinhardt, D., et al. (2014). Clinical relevance of molecular aberrations in paediatric acute myeloid leukaemia at first relapse. British Journal of Haematology, 166, 902–910.PubMedCrossRef
125.
Micallef, J., Dharsee, M., Chen, J., et al. (2010). Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. Journal of Hematology & Oncology, 3, 13.CrossRef
126.
Yang, Y., Chen, Y., Saha, M. N., et al. (2015). Targeting phospho-MARCKS overcomes drug resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia, 29, 715–726.PubMedCrossRef
127.
Scott, K., Hayden, P. J., Will, A., et al. (2016). Bortezomib for the treatment of multiple myeloma. In K. Scott (Ed.), Cochrane Database Syst. Rev (p. CD010816). Chichester: John Wiley & Sons, Ltd.
128.
Orlowski, R. Z., Stinchcombe, T. E., Mitchell, B. S., et al. (2002). Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology, 20, 4420–4427.PubMedCrossRef
129.
Cortes, J., Thomas, D., Koller, C., et al. (2004). Phase I study of bortezomib in refractory or relapsed acute leukemias. Clinical Cancer Research, 10, 3371–3376.PubMedCrossRef
130.
Orlowski, R. Z., Voorhees, P. M., Garcia, R. A., et al. (2005). Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood, 105, 3058–3065.PubMedCrossRef
131.
Horton, T. M., Pati, D., Plon, S. E., et al. (2007). A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clinical Cancer Research, 13, 1516–1522.PubMedCrossRef
132.
Attar, E. C., De Angelo, D. J., Supko, J. G., et al. (2008). Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clinical Cancer Research, 14, 1446–1454.PubMedCrossRef
133.
Messinger, Y., Gaynon, P., Raetz, E., et al. (2010). Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatric Blood & Cancer, 55, 254–259.CrossRef
134.
Messinger, Y. H., Gaynon, P. S., Sposto, R., et al. (2012). Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood, 120, 285–290.PubMedCrossRef
135.
Lancet, J. E., Duong, V. H., Winton, E. F., et al. (2011). A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias. Clinical Cancer Research, 17, 1140–1146.PubMedPubMedCentralCrossRef
136.
Attar, E. C., Johnson, J. L., Amrein, P. C., et al. (2013). Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. Journal of Clinical Oncology, 31, 923–929.PubMedCrossRef
137.
Walker, A. R., Klisovic, R., Johnston, J. S., et al. (2013). Pharmacokinetics and dose escalation of the heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin in combination with bortezomib in relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 54, 1996–2002.CrossRef
138.
Blum, W., Schwind, S., Tarighat, S. S., et al. (2012). Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood, 119, 6025–6031.PubMedPubMedCentralCrossRef
139.
Attar, E. C., Amrein, P. C., Fraser, J. W., et al. (2013). Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leukemia Research, 37, 1016–1020.PubMedPubMedCentralCrossRef
140.
Howard, D. S., Liesveld, J., Phillips, G. L., et al. (2013). A phase I study using bortezomib with weekly idarubicin for treatment of elderly patients with acute myeloid leukemia. Leukemia Research, 37, 1502–1508.PubMedPubMedCentralCrossRef
141.
Walker, A. R., Klisovic, R. B., Garzon, R., et al. (2014). Phase I study of azacitidine and bortezomib in adults with relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 55, 1304–1308.CrossRef
142.
Walker, A. R., Wang, H., Walsh, K., et al. (2016). Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leukemia & Lymphoma, 57, 2100–2108.CrossRef
143.
Wartman, L. D., Fiala, M. A., Fletcher, T., et al. (2016). A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia. Leukemia & Lymphoma, 57, 728–730.CrossRef
144.
Awan, F. T., Flynn, J. M., Jones, J. A., et al. (2015). Phase I dose escalation trial of the novel proteasome inhibitor carfilzomib in patients with relapsed chronic lymphocytic leukemia and small lymphocytic lymphoma. Leukemia & Lymphoma, 56, 2834–2840.CrossRef
145.
Horton, T. M., Perentesis, J. P., Gamis, A. S., et al. (2014). A phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 61, 1754–1760.CrossRef
146.
Ishitsuka, K., Utsunomiya, A., Katsuya, H., et al. (2015). A phase II study of bortezomib in patients with relapsed or refractory aggressive adult T-cell leukemia/lymphoma. Cancer Science, 106, 1219–1223.PubMedPubMedCentralCrossRef
147.
Royer, B., Minvielle, S., Diouf, M., et al. (2016). Bortezomib, doxorubicin, cyclophosphamide, dexamethasone induction followed by stem cell transplantation for primary plasma cell leukemia: a prospective phase II study of the Intergroupe Francophone du Myélome. Journal of Clinical Oncology, 34, 2125–2132.PubMedCrossRef
148.
Araujo, K. P. C., Bonuccelli, G., Duarte, C. N., et al. (2013). Bortezomib (PS-341) treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs. PLoS One, 8, e61367.PubMedPubMedCentralCrossRef
149.
Penna, F., Bonetto, A., Aversa, Z., et al. (2016). Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 7, 345–354.PubMedCrossRef
150.
Turner, J. G., Kashyap, T., Dawson, J. L., et al. (2016). XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget, 7, 78896–78909.PubMedPubMedCentral
151.
de Bruin, G., Xin, B. T., Kraus, M., et al. (2016). A set of activity-based probes to visualize human (immuno)proteasome activities. Angewandte Chemie (International Ed. in English), 55, 4199–4203.CrossRef
152.
Lee, S. J., Levitsky, K., Parlati, F., et al. (2016). Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay. British Journal of Haematology, 173, 884–895.PubMedPubMedCentralCrossRef
153.
de Groot, K. A., Tsang, A., Sjoe, M., Niewerth, D., et al. (2015). Pharmacodynamic monitoring of (immuno)proteasome inhibition during bortezomib treatment of a critically ill patient with lupus nephritis and myocarditis. Lupus Science & Medicine, 2, e000121.CrossRef